Andrew Mwesigwa

2014/HD05/18703U PhD Student: Information Systems

- PhD Proposal Presentation
- 8th June 2018

May Progress

- Resubmitted proposal for presentation to HDRC in June
- Instruments vs stakeholders
- Revisited study area focus
- Reviewed specific objective 1
- Supervised WDR work

Topic: working title

 Modeling the value of meteorological information in health sector policy analysis in Uganda

Problem

 Goals towards eradicating weathersensitive diseases such as malaria remain unmet and weather information remains largely underutilized in a context where meteorolical and health sectors have heavily invested in information systems (Connor et al., 2010; Kanagwa et al., 2015)

General Objective

 To develop a simulation model that demonstrates how utilization of weather and climate information would facilitate policy analysis in combating weather/climate related diseases

Specific objectives

Specific objectives

- To investigate how the dynamics of weather patterns affect malaria prevalence.
- To design a generic stakeholder relationship model that traces health sector value from weather and climate information systems.
- To quantify and simulate the generic model that demonstrates the systemically persistent weather/climate-sensitive health challenges
- To conduct model-based sensitivity analyses and "what-if" experiments in order to propose optimal systemic weather/climate and health sector policy changes.

Research questions

- What factors influence the value of weather and climate information in the health sector?
- How do stakeholders in weather, climate and health information systems relate in tackling weather and climate-sensitive health sector challenges?
- Why has the incidence of weathersensitive diseases persisted in Uganda?
- What is required for Uganda to get the best health sector value from weather and climate information systems?

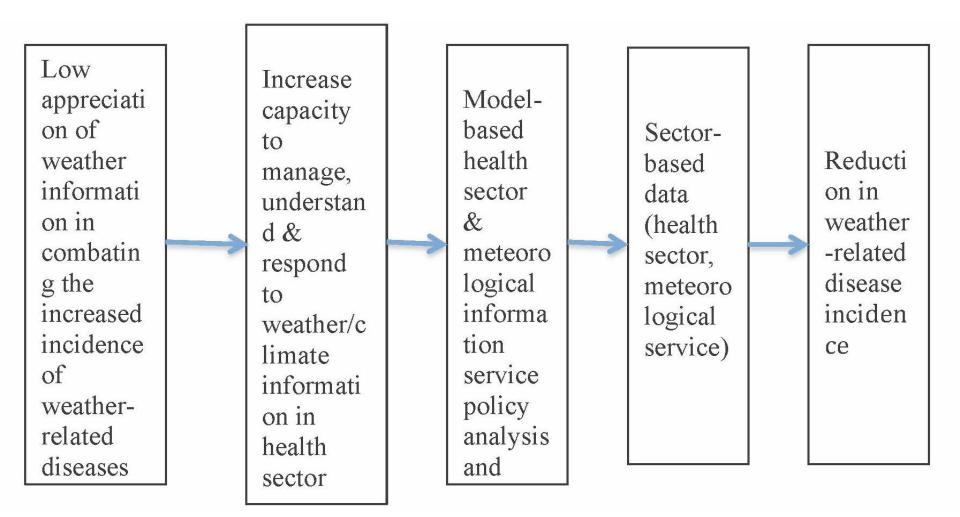
Stakeholders

Stakeholder	Role/contribution in relation to Meteorological & health Information	
Village Health Teams	Usage/utilisation/demand/need disease prevalence	&
Households	Usage/utilisation/demand/need disease prevalence	&
District/Municipal/City Health Officials	Policy: Usage/utilisation/demand/need disease prevalence	&
Hospitals	Disease prevalence	
UNMA	Collection, processing and supply	
Demographic health surveillance sites	Disease prevalence	

Study areas: regions G, I,

Instruments: meteorological info supply side

• Themes:


- Demographic data
- Weather information dissemination to health sector/population
- Stakeholder relationship
- Appropriate information systems in place

Instruments: info demand/utilisation side

Themes:

- Demographic data
- Weather effects on health
- Weather information access
- Accuracy
- Comprehension
- Utilisation/response
- Flexibility of information systems

Conceptual framework

Methodology

- Received feedback on methodology section from supervisors
 - Analysed research approaches
 - Math modeling
 - Design science research
 - Laboratory experiments
 - Experimental Simulation
 - Laboratory experiments
 - Field study/field experiments
 - Case study
 - Action research (SD falls here- changing structure of problem environment)

Linking Specific objectives with methodology

Specific objectives

- To investigate how the dynamics of weather patterns affect malaria prevalence.
- To design a generic stakeholder relationship model that traces health sector value from weather and climate information systems.
- To quantify and simulate the generic model that demonstrates the systemically persistent weather/climate-sensitive health challenges
- To conduct model-based sensitivity analyses and "what-if" experiments in order to propose optimal systemic weather/climate and health sector policy changes.

Methods

- Prob. Identification: Literature review/document analysis reference modes/BOT graphs
 - output: review paper: traces the state of usage of weather information systems in health sector policy in Uganda
- · Model building stage: Field study, case study, FGDs
 - a) Causal loop modeling group model building
 - Eight-factor procedure relationship validation
 - clarity, quantity existence, connection edge existence, cause sufficiency, additional cause possibility, cause/effect reversal, predicted effect existence and tautology
 - Output- paper: Using SD to clarify weather information usage for the health sector: multi-stakeholder approach
 - -b) Stock & Flow modeling
 - Case study
 - FGDs
 - Paper:
- Experimental simulation
- Model use/implementation & theory extension
 - Interface design to facilitate model use
 - Case study: FGDs
 - Application of SD in extending knowledge in of RBV, dynamic capabilities, Value engineering & decision theories
- Sampling procedure
 - Purposive & stratified random sampling

June 2018 Plans

- Present to HDRC 15th June 2018
- Incorporate feedback from HDRC
- Complete & pretest instruments
- Start data collection: specific objective 1

References

- Connor, S. J., Omumbo, J., Green, C., DaSilva, J., Mantilla, G., Delacollette, C., ... & Thomson, M. (2010). Health and climate-needs. *Procedia Environmental Sciences*, 1, 27-36.
- Kanagwa, B. Tuheirwe-Mukasa, D. & Muwembe, K. (July, 2015). The need for an integrated effective weather dissemination system for Uganda. The International Conference on Frontiers in Education: Computer Science and Computer Engineering. Las Vegas, USA, July 27-30, 2015.

Thank You