Andrew Mwesigwa

2014/HD05/18703U
PhD Student: Information Systems

• PhD Proposal Presentation
• 8th June 2018
May Progress

• Resubmitted proposal for presentation to HDRC in June
• Instruments vs stakeholders
• Revisited study area focus
• Reviewed specific objective 1
• Supervised WDR work
Topic: working title

- Modeling the value of meteorological information in health sector policy analysis in Uganda
Problem

- Goals towards eradicating weather-sensitive diseases such as malaria remain unmet and weather information remains largely underutilized in a context where meteorological and health sectors have heavily invested in information systems (Connor et al., 2010; Kanagwa et al., 2015)
General Objective

• To develop a simulation model that demonstrates how utilization of weather and climate information would facilitate policy analysis in combating weather/climate related diseases
Specific objectives

- To investigate how the dynamics of weather patterns affect malaria prevalence.
- To design a generic stakeholder relationship model that traces health sector value from weather and climate information systems.
- To quantify and simulate the generic model that demonstrates the systemically persistent weather/climate-sensitive health challenges.
- To conduct model-based sensitivity analyses and “what-if” experiments in order to propose optimal systemic weather/climate and health sector policy changes.

Research questions

- What factors influence the value of weather and climate information in the health sector?
- How do stakeholders in weather, climate and health information systems relate in tackling weather and climate-sensitive health sector challenges?
- Why has the incidence of weather-sensitive diseases persisted in Uganda?
- What is required for Uganda to get the best health sector value from weather and climate information systems?
Stakeholders

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Role/contribution in relation to Meteorological & health Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Village Health Teams</td>
<td>Usage/utilisation/demand/need & disease prevalence</td>
</tr>
<tr>
<td>Households</td>
<td>Usage/utilisation/demand/need & disease prevalence</td>
</tr>
<tr>
<td>District/Municipal/City Health Officials</td>
<td>Policy: Usage/utilisation/demand/need & disease prevalence</td>
</tr>
<tr>
<td>Hospitals</td>
<td>Disease prevalence</td>
</tr>
<tr>
<td>UNMA</td>
<td>Collection, processing and supply</td>
</tr>
<tr>
<td>Demographic health surveillance sites</td>
<td>Disease prevalence</td>
</tr>
</tbody>
</table>
Study areas: regions G, I, A2, C.
Instruments: meteorological info supply side

- Themes:
 - Demographic data
 - Weather information dissemination to health sector/population
 - Stakeholder relationship
 - Appropriate information systems in place
Instruments: info demand/utilisation side

• Themes:
 – Demographic data
 – Weather effects on health
 – Weather information access
 – Accuracy
 – Comprehension
 – Utilisation/response
 – Flexibility of information systems
Conceptual framework

1. Low appreciation of weather information in combating the increased incidence of weather-related diseases
2. Increase capacity to manage, understand & respond to weather/climate information in health sector
3. Model-based health sector & meteorological information service policy analysis and
4. Sector-based data (health sector, meteorological service)
5. Reduction in weather-related disease incidence
Methodology

• Received feedback on methodology section from supervisors
 – Analysed research approaches
 • Math modeling
 • Design science research
 • Laboratory experiments
 • Experimental Simulation
 • Laboratory experiments
 • Field study/field experiments
 • Case study
 • Action research (SD falls here- changing structure of problem environment)
Linking Specific objectives with methodology

Specific objectives

- To investigate how the dynamics of weather patterns affect malaria prevalence.
- To design a generic stakeholder relationship model that traces health sector value from weather and climate information systems.
- To quantify and simulate the generic model that demonstrates the systemically persistent weather/climate-sensitive health challenges.
- To conduct model-based sensitivity analyses and “what-if” experiments in order to propose optimal systemic weather/climate and health sector policy changes.

Methods

- Prob. Identification: Literature review/document analysis - reference modes/BOT graphs
 - output: review paper: traces the state of usage of weather information systems in health sector policy in Uganda
- Model building stage: Field study, case study, FGDs
 - a) Causal loop modeling - group model building
 - Eight-factor procedure relationship validation
 - clarity, quantity existence, connection edge existence, cause sufficiency, additional cause possibility, cause/effect reversal, predicted effect existence and tautology
 - Output- paper: Using SD to clarify weather information usage for the health sector: multi-stakeholder approach
 - b) Stock & Flow modeling
 - Case study
 - FGDs
 - Paper:
- Experimental simulation
- Model use/implementation & theory extension
 - Interface design to facilitate model use
 - Case study: FGDs
 - Application of SD in extending knowledge in of RBV, dynamic capabilities, Value engineering & decision theories
- Sampling procedure
 - Purposive & stratified random sampling
June 2018 Plans

• Present to HDRC – 15th June 2018
• Incorporate feedback from HDRC
• Complete & pretest instruments
• Start data collection: specific objective 1
References

• Thank You